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Abstract

LIDAR, the high-density laser scanning of geographical features, is an essential technology
for driverless cars, industrial robotics, and smart infrastructure. Yet, vast file sizes, often well
into the terabyte range, have made the transfer and storage of LIDAR Digital Elevation Maps
(DEMs) a significant challenge. Without compressed LIDAR DEMs, automated systems in-
stead must create in real time their own LIDAR point clouds; but these point clouds have
errors and are limited in range. To solve this problem, I show a novel algorithm for the com-
pression of rasterized DEMs using a set-partition-coding algorithm specifically designed for
accurate and reliable encoding of geospatial altitude data. GeoTIFF Digital Elevation Maps
are partitioned recursively to create a quad-tree structure of planar approximations. This
scheme differentiates itself primarily through its use of information entropy as a characteristic
for evaluating the accuracy of its own planar approximations. The algorithm defined in this
paper, entitled General Purpose Geospatial Compression (GPGC), has been shown to exhibit
compression ratios exceeding any similar scheme (from 25:1 to 73:1) at an unprecedented mean
accuracy of 99.6% over a random sample of 135 United States Geological Survey continental
rasters. The decision to make both the standard and C++ implementation of the GPGC
algorithm open-source software greatly improves the accessibility of LIDAR geospatial data
and make a significant impact in the field of DEM compression. Safer driverless cars, fewer
aviation accidents, and more accurate meteorology are made possible due to the improved
compression algorithm.
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1. Introduction

Recent years have seen an increasing use of LIDAR – Light Detection and Ranging – in tech-
nologies such as ground collision avoidance for aircraft [1], autonomous vehicles [2], and robotics [3].
In their use of LIDAR, these innovations have inspired some of the most exciting developments in
computer science and engineering [4], supplementing the long-standing use of LIDAR in precision
agriculture [5], surveying [6], and land management [7]. Historically, with no need for real-time
decision-making, the constraints around the storage and the transmission of LIDAR data were
scarcely felt [8]. But, with autonomy’s new and growing insistence that LIDAR data be instan-
taneously precise, the previously-ignored constraints are beginning to bind: a paltry 5,000 square
feet of a city block comprise, for example, an overwhelming 47 megabytes [9]. Storage of these very
large datasets is difficult, and it is impossible to transmit extensive geospatial data at the speed
and accuracy required by autonomous devices, whether via broadband or cellular connections [10].
To circumvent this problem, the large-scale systems of Google Waymo [11], Boston Dynamics [12],
and Lockheed Martin [13] have chosen to create LIDAR point clouds in real time, with mounted
sensors mapping a three-dimensional environment for a vehicle as it travels through space [14].
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Put colloquially, these systems do not attempt to access virtual navigation maps so much as try
to "see" the world in the moment, avoiding perceived obstacles while still moving forward.

The use of LIDAR by Google Waymo and other companies is not without its problems, how-
ever. LIDAR has been limited in its accessibility due to the cost of high quality sensors and the
unpredictable reliability of concurrently generated data [15], to name just two vexing issues. Tesla,
for its part, opted out of research into LIDAR storage and transmission, concerned about both
the cost (10,000 dollars per sensor) and the viability of drive-time data-generation for autonomous
technologies [16]. Pre-analyzed data is a proposed answer to this problem [17]; yet, as improve-
ments in digital telemetry begin to slow, this solution is viable only with better data encoding and
digital compression. Compression, in particular, is essential to store and transfer the geospatial
data needed for the safe use of autonomous technologies [18]. Unsurprisingly, better compression
algorithms are a source of great commercial and academic interest [19] [20] [21].

This paper presents a novel approach for the compression of LIDAR data, promoting its transfer,
storage, and usability in both autonomous and analytical applications. As noted before, LIDAR
scanners generally measure their surroundings to create "point clouds" of geospatial data [22]. The
primary uncompressed file format for point-cloud data, LAS, stores the data as 32-bit integers with
offsets and scaling defined in the file header [23]. It is significant that, due to this conversion, even
the uncompressed binary file must be decoded with some computation before the memory may be
accessed by an application [24]. LAS stores points in contiguous 152-bit structures encoded into
the binary that define the location of points relative to the source, as well as identification data for
each point in the vast array [25]. Once the data is unpacked, most technologies create a large OBJ
mesh to allow for topological analysis of the environment and the source’s positioning within it
[26]. This information redundancy is a product of the unstructured nature of pure scanner output.
With millions of points in a sample environment, information becomes too large not only to share,
but, also, to handle locally without the most powerful of machines. Thus, data is often quantized
into a two-dimensional grid known as a raster, which, under most specifications, shrinks the 152-
bit entries of LAS into simple 16-bit integers filling an array of statically defined size [27]. As
with all quantization, this is a lossy procedure [28]. In the process of scanning a three-dimensional
environment, there are no guarantees of homogeneity in point distribution or resolution. The
process of rasterization attempts to structure this data by normalizing and interpolating a point
cloud to fit into a grid structure.

Rasterization itself can hardly be thought of as compression, for it is a non-reversible procedure;
any data other than the index of a point in the 2-D array is discarded. It is fortunate that the United
States Geological Survey, in its efforts to map the entire United States, first with sonar from the
Space Shuttle program and today with satellite LIDAR, provides both point-cloud and rasterized
forms of its data; this is an attempt to eliminate any confounding variables that may occur during
rasterization [29]. Despite the destruction of up to 80% of the points in a LIDAR dataset, the
process of rasterization is often beneficial. It simplifies for analysis the 3-D meshes that are
generated, allowing for workable and high speed quadrilateral meshes (as opposed to triangles) [30].
Furthermore, rasters can be easily indexed and points can be compared simply without having to
deal with complicated conversions [31]. Simple rasters become Digital Elevation Maps (DEM)
with the encoding of relevant geospatial metadata. The prolific GeoTIFF standard importantly
provides the latitude and longitude of the most northwestern point, the geo-referenced difference
between each point in terms of lat-long, and a coordinate reference system (CRS) facilitating
accurate projections of data removed from the equator [32].

Rasterized DEMs lend themselves easily to sophisticated means of compression by the exploita-
tion of the more advanced patterns that can be inferred from a 2-D array [33]. Functionally, in
this sense, the rasterized DEMs are no different than images, for which the development of lossy
and lossless codecs is already a mature field. Understandably, DEMs are often compressed much
like images, most commonly using either the PNG lossless or the JPEG2000 lossy standard for
compression [34]. This paper outlines a novel codec for lossy compression of rasterized DEMs using
a unique partitioning codec known as General Purpose Geospatial Compression (GPGC).
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2. Unique Requirements

Ultimately, GPGC is not an image codec; it is fine-tuned for the geospatial data compression
requirements of automation technologies. Lossy compression algorithms are traditionally marked
by four attributes, each of which is tested in this paper: decoding speed, encoding speed, compres-
sion ratio, and accuracy [35]. Due to the critically important use of geospatial data in autonomous
decision making, two attributes among the four stand out for their particular importance, decoding
speed and accuracy. Geospatial data applications anticipate extremely large decompressed data
sizes. It is paramount that a novel algorithm provides a decoder that operates at a low algorithmic
complexity, and it is even more important that data be encoded extremely accurately [36]. The
latter point here is difficult to overstate. Highly efficient modern image compression algorithms
manage high compression ratios by tolerating artifacts within an image [37]. The treatment of ar-
tifacts in decompressed rasters is a point of distinction between image compression algorithms and
other types of raster codecs such as GPGC. The JPEG standard relies on encoding of the Discrete
Cosine Transform, which is a highly efficient method of encoding data based on the intersections of
cosine waves [38]. This suffers from both aforementioned issues: it is comparatively slow to decode
(although tolerable), and it is prone to misrepresenting critical areas in a 3-D elevation map [39].
The transform relies on continuous curves, and thus struggles to encode hard edges (as would be
found commonly in urban environments) without aberration at high ratios [40].

JPEG, unlike GPGC, encodes each area of a raster indiscriminately [41]. It provides its 8× 8
operation across each area of the present array. In geospatial data, where not every part of a DEM
is of equal importance (the slopes of a mountain must be resolved at at perfect accuracy, while
consistently rolling fields can afford small errors), greater efficiency can be achieved by intelligent
analysis of the terrain a codec is compressing [42]. Furthermore, use of linear sloping provides less
artificating, an aspect of compression that is essential, even critical, for terrain data [43]. Small,
flagrant errors in a dataset can be catastrophic for autonomous technologies that rely on perfect
data [44]. The elimination of these types of inaccuracies has been a key consideration in the
development of GPGC.

3. Overview

General Purpose Geospatial Compression, as presented in this paper, is a set partition coding
algorithm. It is able to represent larger rasters by recursively generating a quad-tree structure,
with each leaf node on the tree containing a three dimensional vector and size to define a planar
approximation for an area on the raster given that size. The data is encoded as a depth-first
search of the tree structure and reconstructed to a grid at decode-time. The constructor of each
partition calculates a planar approximation section of the raster it contains, filling the content
of the relevant leaf node with the orthogonal vector. The accuracy of this planar approximation
determines whether the algorithm will recurse and create a new sublevel to the tree. GPGC takes a
novel approach to analyzing its partitions; while JPEG2000 [45] and GEDACS [46], two competing
compression algorithms, resolve regions based on maximum error thresholds, the presented codec
notably interprets each differential as a probability. This allows for a smarter analysis, resolving
areas of high information entropy at perfect resolution, while compressing regions of lower
entropy at a very high efficiency. The average information entropy of a region per point is calculated
with reference to the planar approximation, and the program quadrisects the relevant region,
improving the resolution four-fold recursively until the quad-tree approximation is deemed sufficient
by parameters defined to the encoder

4. Raster Representation

A compressible raster is defined by pixel values pm,n, where (m,n) is the point coordinate in the
raster. Multidimensional arrays are represented with bold letters, but GPGC does not anticipate
any data of a greater dimension than 2. It is a convention to define the process of set partition
coding with an uppercase omega:

R = Ω(C).
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The Ω(C) transform in this case is the process of generating hierarchical quadtrees representing
the 2-D array r that are then decoded to form the decompressed raster c.

5. Compression Procedures

5.1. Mosaic Raster Preprocessing

Upon opening the GeoTIFF file into a 2-D array, the encoder immediately pre-processes the
raster based on its dimension to create a mosaic from the top left corner, attempting the fill
the area with squares of side length 2n. It fills the data with the largest possible size from the
constraint. From there, it duplicates itself to form a 2 × 2 square overlapping the original raster.
Assuming that the size of the outlying regions extends beyond the edges of the raster, it partitions
itself and reduces itself until the edges are properly defined with fragments of 2n-sized squares. Any
partition that lies outside the raster entirely is discarded. Once an appropriate size is determined,
its size and offset is pushed back to a a standard vector in the provided C++ implementation.
The partitions defined here work in a similar manner to the partitioning in GPGC. However,
the two methods should not be confused; the mosaics are entirely a pre-processing method to
allow for the encoding of efficient, square, binary partitions. The encoding process occurs for
each 2n square that fills the mosaic and each square is encoded into a separate tree structure.

Figure 1. Example of mosaic pre-
processor divisions

When a new fragment is loaded into memory by the encoder,
it generates a 16-bit prefix that identifies the beginning of a
new tree. Following this magic, log2(m) is encoded as an 16-
bit integer, followed by the number of mosaics of equal size,
where m represents the decompressed side length. This is a
particularly important step. As can be visualized in Figure 1,
layers often form of fragments with the same dimension. This
is handled easily by simply encoding the number of contiguous
tree structures with the same size to avoid providing a large
header for an extremely small tree (as would be found near
the edges of images). The interpretation of when a tree is
filled is handled by the decoder as will be later described in
detail.

The order of the encoded fragments need not be in the
order in which they were created recursively. To do so would
actually require many additional headers to be generated. In
the edges of a raster as sizes quickly change, a header would
have to be defined for no more than two small trees. Because
the fragments can be encoded in any order that allows unambiguous calculation of their offsets,
it is obvious from Figure 1 that sizes decrease radially towards the edge. Therefore, the data can
most efficiently be encoded into concentric bands radiating from the top left corner named the
origin. The maximum binary size can be simply calculated as

H⌊log2(M)⌋

where H is a constant 16+8+8 bit identifier of a new tree size and m is the maximum dimension of
a raster. In practice, this is of a negligible size in an encoding, and it is believed to be advantageous
to encoding rectangular data blocks or dealing with half-partitions.

5.2. Partition Matrix Representation

Because of the outlined mosaicing process, each partition is guaranteed to be square and of
size 2n. Each altitude encoded into the DEM can be interpreted as a position in a matrix. This
notation is convenient because it allows unambiguous notation, but more significantly, we can
perform relevant matrix operations on this structure. Following this, the process of generating a
Least Squares Regression Plane for the topography contained within the matrix is straightforward.
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If a partition p is represented as

p =

 a11 . . . b1M
...

. . .
...

bM1 . . . bMM

 ,

it is simple to calculate the normal vector for a plane of best fit. If you construct a matrix with
M2

i rows, where each row outlines an index for each point with a third column of all 1s. Following
Ax = b, the orthogonal vector x can be calculated by defining b as a vector of rank 1 with each
row aligned with the index defined in A as specified below:

Ax = b ⇒



1 1 1
2 1 1
...

...
...

1 2 1
2 2 1
...

...
...

xn ym 1



 î

Ĵ

k̂

 =



C11

C21

...
C12

C22

...
Cmn


.

.

The orthogonal vector can be calculated through matrix arithmetic:

xm =

 î

ĵ

k̂

 = (ATA)−1ATB.

This fit vector xm is calculated each time a partition object is constructed. The normal vectors
are the key element of the set partition code. The rest of the algorithm is simply the means of
evaluating the accuracy of the planar approximation created by the vector.

The array p is iterated upon, and the residual d at point (m,n) is calculated simply as

dmn = |Cmn − (̂im+ ĵn+ k̂)|

Figure 2. distribution of dif-
ferentials

At this point, the first of two parameters taken in by the en-
coder, σ, is considered. Sigma represents the standard deviation
of expected errors. This is another key distinction from other set
partition coding algorithms. Maximum error is not necessarily con-
sidered, and neither is average error (although these can be passed
as flags to the official implementation). The only consideration is
standard deviation. This allows us to interpret each point in a par-
tition not as an integer residual, but instead as a probability. This
distinction is fundamental to the entropy based encoder described
ahead.

To convert this to a probability, the displacement is converted

to a z-score. The traditional z-score formula
d− µ

σ
becomes

d

σ
under the expectation that the average error above and below the
regression plane will be zero. From this z-score, the probability of each point is calculated. The
normal probability density function is integrated up to the desired z-score,

P(Cmn) =
1√
2π

∫ z

−∞
exp

x2

2
dx

It is surprisingly easy to approximate this with crude method of just assuming a lower bound of
−10 as −∞ as the difference is less than 2× 10−6 which is an acceptable error for this calculation.
The unique contribution of GPGC is its use of entropy encoding. Literally, the entropy represents
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the amount of binary required to express a certain probability, but, more generally, it is a helpful
model for understanding the uncertainty of data. This is the critical use of it in geospatial data,
where it is able to isolate areas that can be compressed aggressively from areas that require a
greater resolution.

Following Claude Shannon’s formula for information [38], the total information content of a
row X in C is defined as

H(CX) =

K∑
n=1

log2 P (CXn).

It follows that the average information content of the entire chunk C is

H(C) =

M∑
n=1

M∑
m=1

log2 P (Cmn)

M2
.

5.3. Partitions

Figure 3. Planar
approximation of high-
entropy region

The Set Partition Coding (SPC) algorithm maintains acceptable res-
olution by dividing high-information chunks with size 2n × 2n into four
equal sub-chunks with size 2n−1 × 2n−1 (quadrisecting). The partition
objects are constructed recursively based on the average information
entropy of the partition C. If the average entropy is within a tolerance
ζ that is supplied as a runtime flag to the executable, then a leaf node
is bitshifted into a bytestream passed by pointer to the object. Oth-
erwise, four child structures are generated and the memory is freed for
the parent structure. Each child structure is obviously subjected to the
same evaluation. At some point with a minimum size 21, the planar
approximations will meet the entropy tolerance and be encoded into
the bytestream. What happens incidentally under this procedure is an
encoding of a depth-first search of a quadtree structure. This process is
repeated along each recursion until the square of each leaf node equals
the square of the original. Given a set R of encoded nodes that are the
result of transform Ω, described above, with each with size m representing the original raster with
size M , it is clear that

|R|∑
i=0

(R(i)
m )2 = M2.

5.4. Encoding

Each partition of the raster can be represented as a four 16-bit primitives in the form {̂i, ĵ, k̂,M}
where M is the size of the partition. Elements î, ĵ, k̂ are 16 bit representations of the elements
of orthogonal vector xm. The î and ĵ elements are represented as 16-bit IEEE754 half-precision
floats. This does lose an observable amount of data, but the precision of 32-bit floats is deemed
unnecessary for the representations. It is acceptable for î, ĵ to be half-precision floats due to the
small size of realistic altitudes and the tolerable error expected in each data point. Realistically,
no values will be encountered on Earth requiring a greater range than unsigned 16-bit integers or
more float precision than 2−14 (for a half-precision float). And k̂ and M are 16-bit integers due to
less need still for precision and more need for range. Furthermore, the compressed raster obviously
cannot exceed the 16-bit precision of the original raster. In the official implementation, the four
16-bit quantities are serialized into a 64 bit object pointer, which is bitshifted into a stored position
on the encoding object that is passed by pointer to each partition.

5.5. Decoding

The problem of decoding a quad tree is a simple one to a human, who are capable of immediately
understanding the larger shape of the tree [39]. However, the obvious human solution is of an NP
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efficiency and is absolutely not fit for decoding [40]. The problem is identifying from a position in a
depth-first search the x and y offset of a partition within a raster. After the offsets are calculated,
it is trivial to reconstruct the raster from the orthogonal vectors. There has been considerable
academic work done on the reconstruction of quadtree decomposition [41] [42] [43], but GPGC
opts for a simpler, and likely faster, approach. Provided an array of log2 M for each partition in
the tree and an original location of 0, the offset L of point d at position m in the lowest level
partition can be calculated as

Ln = Ln−1 +
1

2m

This formula is nearly impossible, and certainly impractical, to understand in terms of every
variable, as many of the variables change recursively throughout the decoding process. It is more
efficient to think of the formula in terms of the following algorithm:

Algorithm 1 Quadtree Raster Reconstruction

Require: s = {log2 x ∈ Z : ∀x < 27}
1: Lx = [0]
2: Ly = [0]
3: buf = [0]
4: i = 0
5: while i < |s| do
6: while bufi < si do
7: Increment bufi
8: for all c ∈ 0 < x < 3 do
9: Insert bufi at position i+ 1 in buf

10: end for
11: Insert Lxi + 2−bufi at position i+ 1 in Lx

12: Insert Lxi at position i+ 2 in Lx

13: Insert Lxi + 2−bufi at position i+ 3 in Lx

14:
15: Insert Lyi at position i+ 1 in Ly

16: Insert Lxi + 2−bufi at position i+ 2 in Ly

17: Insert Lxi + 2−bufi at position i+ 3 in Ly

18: end while
19: i++
20: end while
21: end

6. Accuracy of Encoded Data

GPGC was tested against seven different compression algorithms. Three geospatial algorithms
were considered: GEDACS (developed by NASA) [46], MrSID (Los Alamos National Laboratory)
[47], and ECW (Hexagon AB) [48]. Three binary codecs were identified: ZSTD (Facebook) [49],
PACKBITS (Apple) [50], and Deflate (also known as Lempel-Ziv 77) (MIT) [51]. Finally, GPGC
was compared against the JPEG lossy image algorithm, seen as the gold standard for extremely
high-efficient compression, although the reasons for its unsuitable use have been explored thor-
oughly in this paper. Using the GDAL CLI and the proprietary MSVC solution for GEDACS,
each possible codec was implemented onto 135 randomly selected United States Geological Survey
Continental 1-arc second rasters (12,967,201 points per raster) captured from the SRTM project.
This dataset, downloaded from [29], was chosen due to its unprecedented reliability and the sim-
plicity of the existing encoding, ensuring as many of the codecs could be tested as possible. Testing
was done inside of a Jupyter IPython notebook where each file was evaluated for compression ratio
and mean average error. To calculate the percent error of the compression against the measured
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data, we can use the formula:

MAE =
1

M2

M2∑
i=0

|zoriginal − zdecomp|.

Compared by compression ratio and mean average error (MAE), GPGC significantly outper-
forms its direct competitors. Most notably, the compression ratio of GPGC is triple that of its
nearest competitor GEDACS, a similar NASA algorithm for geospatial rasters. Furthermore, the
average ratio is more than double the posted ratio of ECW, a proprietary format owned by Hexagon
AC and used for that company’s autonomous vehicle project. (Note the median compression ratio
for ECW has not been quantified in any peer-reviewed articles and is cited only from information
that Hexagon itself provides.)

Compression Benchmarks
Compression Comp. Ratio Percent Average
Algorithm 25% Med. 75% Decrease Error
GPGC 8.2 24.7 72.8 95.97% 6.71
GEDACS 7.7 8.48 9.2 88.21% 15.7
MrSID 4* n/d* 10* n/d* 0
ECW n/d* 10* 15* 90%* n/d
ZSTD PRED1 1.7 2.12 4 52.12% 0

The above table compares the compression ratio of GPGC at the 25th, 50th, and 75th percentile
as compared with other algorithms. Percent decrease is a function of the median, observing the size
of the median (50th percentile) compressed binary with the original file. It is primarily intended
to aid the reader in understanding the magnitude of the compression ratio. On each percentile,
GPGC leads the competition in terms of compression efficiency For Mean Average Error, GPGC
also leads the similar lossy algorithms ECW and GEDACS. For ECW and MrSID, benchmarks
could not be acquired from their respective proprietors. The numbers presented in the table are
extrapolated from their published, if proprietary, benchmarks. These self-provided benchmarks
have no peer review and likely represent a best-case realistic scenario for geospatial compression.

6.1. Performance

Figure 4. Altitude and Z-Score Histograms

Figure 4 plots the Root Mean Square Error (RMS) against the median compression ratio for a
set of 10 test rasters that were evaluated at each level. Note the differing axes for each quantity.
The compression ratio is purely a function of the number of leaf nodes. It follows that with a
less stringent threshold, the data can be represented in fewer leaf nodes. Historically, quadtree
decomposition algorithms such as GPGC have suffered with precision at these thresholds (which
are, again, represented in terms of the parameter zeta). However, with clever bitwise operations
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and efficient storage of data, the GPGC algorithm accomplishes high compression ratios at great
accuracy and very high compression ratios when a greater tolerance is allowed. The algorithm is
designed to work anywhere with a zeta between one and 25. However, the best results are achieved
between two and five. At a zeta of one, meaning the compression will be nearly lossless, the
compression ratio is often less than two, while, when zeta is greater than five, the error because
unsuitable for real data and obvious on visual inspection. For all measurements, a very high
information entropy threshold was used so as to show the relationship without interference.

An often overlooked but highly important part of a compression algorithm is its decoding speed.
GPGC opts for a novel yet efficient decoder that is delineated in the previous section and that
reconstructs a depth-first search of a quad-tree structure. The industry tool for decoding GeoTIFF
and DTED rasters is GDAL [52]. GPGC is compared against the GDAL uncompressed speed at
various values of zeta. Interestingly, above a zeta of 15, GPGC becomes faster than GDAL. The
only explanation for this is that the bare-bones implementation of GPGC skips the complex header
generics of the TIFF specification, allowing for slightly faster encoding when few operations need
to be performed.

7. Discussion

The implementation of a more advanced and efficient LIDAR compression algorithm like GPGC
holds the potential to significantly enhance public safety by improving the speed and accuracy of
data processing in autonomous vehicles [53], drones [54], and industrial robots [55]. Most notably,
the ability to process LIDAR data with greater alacrity and precision will reduce the likelihood of
dangerous accidents, whether car crashes, ground collision of aircraft, or workplace mishaps [56].
This, in turn, will accelerate the adoption of these new, revolutionary autonomous technologies
[57].

A better compression algorithm like GPGC will also result in notable cost savings, as the large
datasets generated by LIDAR consume significant storage resources. Globally, 42 billion dollars a
year is spent on data storage [58]. While not all of this stored data arises from LIDAR, it shows the
extraordinary expense of the expanding informationalized world, some of which could be avoided
through better compression.

An improved compression algorithm will, as a final matter, enhance accessibility to socially
valuable LIDAR data in fields such as transportation [59], urban planning [60], and environmental
monitoring [61]; more and better compressed data of these types can be deployed on hand-held
devices, for example [62]. The increased access to LIDAR data would allow for greater research
opportunities and provide businesses and governments with a more comprehensive understanding
of their environments [63]. Other benefits of the novel GPGC algorithm could be seen in forensic
pathology [64], bathymetry [65], and archaeology [66], to name just a few disciplines.

8. Conclusion

With improving LIDAR sensor resolution and growing data volume, how to efficiently store
and transmit LIDAR data becomes a challenging problem in many 3D applications. To address
this challenge, I propose a novel geospatial data compression algorithm named GPGC (General
Purpose Geospatial Compression) that was implemented using the programming language C++.
GPGC is specifically designed for geospatial data and aims to improve upon previous algorithms
in terms of accuracy and efficiency. It uses a quad-tree set-partition-code to divide the data into
a tree structure, with each node representing a sub-region of the data. The data in each node is
then encoded as a vector representing the slope of the terrain in that region. This tree structure
is further compressed using entropy coding and prediction-based techniques.

I evaluated GPGC on a variety of geospatial data sets and found that, compared to other
compression algorithms, it was effective in terms of both accuracy and efficiency. GPGC was able
to significantly reduce the size of the data while preserving the integrity of the information. GPGC
was also designed to be more sensitive to outliers and extraordinary terrain features, making it
particularly useful for applications where accuracy is critical.
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The open source nature of GPGC allows it to be used on a wide range of computer hardware
and makes the algorithm accessible to a broad community of users. This is an important advantage
as users can easily integrate GPGC into their own systems and modify it to meet specific needs.
The use of C++ as the implementation language also promotes efficient execution, making GPGC
a suitable choice for use in resource-constrained environments such as embedded systems or on
large datasets where performance is critical.
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