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Abstract

As datasets for deep machine learning architectures have grown exponentially, the tech-
nique of machine-assisted dataset generation has become increasingly necessary. Typically,
this technique takes the form of network generating validation datasets or labels for another
network, which are fine-tuned by human feedback. This paper presents a model, trained
entirely on auto-generated validation masks, to identify defects in images of electrochemical
depositions. A U-Net segmentation architecture was trained by underfitting the model on a
low quality validation dataset which was created with an entirely deterministic kernel convo-
lution of a 512 × 512 image. The model has been shown to exceed the quality of its training
data in terms of lack of noise, generalizability, and correctness when tested on a calibration
sheet of laser-engraved film defects. Furthermore, the dataset was created with very mini-
mal human fine-tuning or adjustment, which was necessary for localizing hundreds of small
cracks and spots per chemical film photo sample. Due to the small network, training was
complete in only 7 epochs, taking a total of 6 minutes on average to completely train. The
proposed technique is believed to be applicable to similar, basic segmentation tasks; however,
the effectiveness of it for pretraining largely depends on the nature of the data to segmented
productively without the use of machine learning.
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1. Introduction

The advent of artificial intelligence (AI) has revolutionized numerous fields, including materials
science and manufacturing. In particular, AI has shown immense potential in the analysis and
quality control of electrochemical films used in the production of perovskite solar cells (PSCs).
PSCs have emerged as a promising technology in the field of photovoltaics due to their high power
conversion efficiency and cost-effective fabrication processes [3]. Our laboratory focuses on the roll-
to-roll production of PSCs through the use of electrodeposition. In this process, conductive indium
tin oxide (ITO) plastic substrates are plated with a thin layer of a desired chemical; when complete,
the process creates a stack sufficient to synthesize an efficient electrode. However, the presence of
defects such as scratches, spots, and holes can significantly impair the functionality of PSCs. These
defects can lead to nonradiative recombination, which lowers the photoluminescence quantum yields
(PLQYs), device efficiency, and stability. As the demand for renewable energy increases, efficient
and accurate methods to detect defects in the manufacturing process of perovskite solar cells will
become essential.

Obtaining a computation model that is capable of quickly and precisely identifying hundreds
of small-scale defects in chemical films would be of valuable assistance to scientists working on
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Figure 1. Workflow of Scientific Machine Learning (Xu et al., 2023) [4]

optimizing the electrodeposition procedures and in manufacturing solar cells at increasingly large
scales. Moreover, a quantitative model gives a more precise, reliable, and standardized approach to
treatment and evaluation of films. Synthesized films are non-homogeneous and contain patches of
varying thickness and concentration. Areas of defect within a film can be identified by deformations
in color that are representative of experimental error from air bubbles, crystalization, and other
phenomenon that affect the thickness and homogeneity of a reaction. Although color changes are
fairly obvious and well-controlled in this context, determining the exact area or intensity of film
defects when attempting to optimize procedures is challenging.

Progress in the development of machine learning (ML) algorithms shows potential for appli-
cation in computer-aided automatic data analysis of chemical films through photoanalysis. The
multi-level processing of convolutional neural networks (CNNs) have been surpassing humans for
several years at many vision tasks, especially those that involve the simultaneous processing of
numerous characteristics [1]. CNNs rely on identifying small artifacts such as corners, dots, or
grain patterns that comprise a larger structure within an image. As such, it is sensible to as-
sume that the abstract shapes of film defects could be recognized based on a characteristic of hard
edges outlining the color of a hole or crack in the deposition. Individual CNNs are limited in
the dimensionality of their output data. More robust encoder-decoder models that contain nested
convolutions such as the U-Net architecture become necessary for identifying defects in an image,
as would be desired for capturing size, intensity, and location. Although deeper and more mod-
ern encoder-decoder architectures such as Vision Transformers (ViT) and U2-Nets have become
popular recently, for the sake of simplicity and attention to the topic of data fitting, a U-Net was
designed after Ronneberger et al. [2]

2. Dataset

U-Net architectures are usually trained on a paired image and a validation mask of equal
dimensionality, which identify the ground truth segmentation region for the image. This type of
dataset is especially labor-intensive to create. The segmentation area must be manually selected
for each image, and, due to the relative complexity of the task, large datasets are necessary to
fully train a suitable model. This presents additional issues when analysis of the data requires
technical expertise (such as in the case of tumor segmentation) or data is especially abstract (as
in the case of our example). For biomedical and scientific semantic segmentation, the creation of
dataset is usually the preventative factor to the use of a ML model. Modern computer vision data
processing techniques such as image augmentation, as delineated thoroughly in the Ronneberger
et al. paper, have lightened the burden of dataset generation substantially, allowing the creation of
synthetic training data based on original data. However, even labelling enough samples for image
augmentation can be a laborious task. Finally in our specific usage, the density of defects within a
film makes manual segmentation especially challenging and subject to human error. False negatives
arising from human error are especially damaging, due to introducing contradictory training data
that would be further exacerbated by intense data augmentation.
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Figure 2. Heuristic Architecture. Layers are 1-dimensional, separated from the HSV channels.
No shrinking or pooling convolutions are applied.

3. Heuristic

To address the issue of dataset generation for these sorts of simple segmentation tasks, we
created a provisional heuristic relying on basic image transforms to identify defects by color. Images
of films were first converted from RGB to HSV, providing deeper insights into the nature of the color
without blending. Experimentally, it was shown that the color change exhibited by undesirable
regions occurred primarily over the saturation channel, which was elected to be processed with a
Sobel 7×7 edge-finding kernel in the vertical and horizontal directions; these were blended to form
a complete error mask. Another pass was attempted using the same Sobel procedure, but it was
first eroded and dilated using the relevant OpenCV image processing functionality. This served to
artificially lower the quality of the image sample such that a less noisy result could be ascertained
by controlling the first pass through a bitwise AND operation.

This heuristic model suffers from several problems, making its usage alone unsuitable as a
computational model for the desired segmentation task.

Fixed kernel size Due to a fixed, small kernel size, defects larger than 14px in diameter cannot
be accurately segmented. This issue became more apparant when image quality increased,
and large, intentional defects were created.

Oversensitive In order to accurately segment the full area of true positives, the threshold of
sensitivity was lowered such that noise was easily introduced into the image through single
pixel color aberrations and compression marks.

High False Positive Rate The use of such a small kernel window led to a highly inaccurate
output. The segmentation lacked spacial context (as would be provided through a repeated
pooling) and would often report minute lighting differences and reflections as flagrant rows
of defects.

Despite significant issues with the model, its high sensitivity showed a very low false-negative
rate. As discussed earlier, type II statistical errors are much more confounding to the model.
We hypothesized that if the model was deliberately undertrained to a dataset generated by the
heuristic, it would continue to be trained on the correctly identified defects, but would struggle to
train as quickly on the random noise and false positives. If you cut off training early, you would be
left with a model that is not perfect, but essentially pre-trained under complete self-supervision.
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Figure 3. U-Net Architecture. Visualization of multi-level convolution and pooling (Tokime et
al., 2019).

4. Neural Model

To train on the heuristic, the U-Net model begins with an initial convolutional block that
processes the input data through multiple kernels. Following this, a series of ’Down’ modules are
sequentially linked, progressively increasing the number of filters with each layer while reducing
the spatial dimensions. Each ’Down’ module comprises a Max Pooling operation and a double
convolution operation, successively abstracting the information and increasing the feature space
dimensions. In the subsequent decoder part of the architecture, a set of ’Up’ modules symmetrically
mirrors the encoder’s structure, gradually decreasing the feature space dimensions while expanding
the spatial dimensions. These ’Up’ modules perform an upsampling operation followed by a double
convolution, combining the high-level features learned from the encoder with the detailed spatial
information from the decoder. The final module of the architecture consolidates the processed
features into the desired output classes of rasterized floats.

This U-Net model’s beauty lies in its symmetry and in its capacity to process an input through
a series of convolutions, pooling, and upsampling operations, while maintaining a balance between
the spatial and feature space dimensions. This ensures high-resolution output, making it a suitable
choice for precise biomedical image segmentation tasks.

5. Results

5.1. Implementation

For the experiment our heuristic was programmed using OpenCV image transforms, and the
neural model was designed using PyTorch. The implementation is publicly available on the GitHub
repository along with the weights. The model has been implemented into the TU analytical chem-
istry software suite, T.U.D.E.L., where experimental evaluation was performed. Model training
was performed on a single Google Colab NVIDIA V100 GPU under the 32GB configuration.
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5.2. Training

Figure 4. Performance of model by epoch. (Av-
eraged from three training sessions)

Training was evaluated for the model us-
ing the Adam optimizer with a learning rate of
0.001 for the first five epochs and was reduced
to 0.0003 for the remaining epochs. For model
evaluation during training, the 10% training
set split and the calibration sheet were eval-
uated based on Binary Cross-Entropy at the
completion of each epoch. The weights were
saved for the following experiments at the lo-
cal minimum for calibration sheet loss (epoch
6), although the model continued to train to
overfitting. Following epoch 10, the training
and testing average loss continued to decrease
in lockstep, while the validation loss showed an
continuous positive trend from the minimum.
Both the validation and test evaluations were
necessary to distinguish between the fit on the
low quality validation dataset against the high-
quality manual segmentation on the calibration
sheet. The minimum loss for the validation split was achieved at epoch 18, demonstrating that
the model was underfit to achieve the minimum loss over the verified data. Please note more
standardized units for segmentation quality were not used for evaluation due to the small scale
of defect masks (50% of correctly identified defects were less than 100px in size). Dice Score and
Jaccard Score were shown to provide negatively biased and noisy metrics for evaluation.

5.3. Experiments

After completion of the training, the model was tested and qualitatively evaluated on a separate
film dataset. Compared to the original model, the neural model showed significantly less noise and
sensitivity than the training heuristic. Furthermore, it displayed good choice and consistency in its
segmentation of errors (which are thresholded at 0.2 for the visualization). The model, in contrast
to its training data, rarely selects false positives, but instead shows a greater preference for false
negatives. This is separately alarming, but an easier problem to combat in the fine-tuning stage of
a deeper model. This problem is hypothesized to also be less apparent in more modern U-Net-based
architectures, the implementation of which were outside the scope of this learning experiment.

Figure 5. Predictions on the film dataset. Original film samples labeled by film material. Re-
maining films shown with highlighted segmentation mask.

Furthermore, we ablated a Polyaniline film with 25 micron laser defects in a raster grid. BRAD:
THIS SENTENCE IS NOT COMPLETE: This "calibration sheet" was designed to be unambigu-
ously segmented by a human, and a more accurate test for the model’s performance on controlled
data (as opposed to natural macroscopic films, where there is a great deal of ambiguity as to what
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is considered a "defect" which would confound any rigorous testing). The heuristic and neural
model were evaluated on this calibration sheet and compared to the ground truth. The heuristic
model had extreme trouble with this sample. The heuristic was oversensitive to the minimal color
changes that can be most easily recorded under a microscope, leading to essentially complete noise.
However, the neural model was able to quite easily segment the regions with zero false positives
(other than systemic noise around the edge that can be easily controlled for). However, the neural
model also had a number of false negatives, especially near the edge of the colored region. It also
exhibited strange behavior in its inaccurate localization, shifting the rightmost columns of defects
around 4 pixels to the right, undermining the overlap correlation between the ground truth and
prediction. This phenomenon is interesting for further testing, but is also a problem that can be
addressed in the fine-tuning stage.

Figure 6. Left: Original image; Middle: Neural prediction against Ground Truth; Right: Heuristic
prediction.

6. Conclusions

Our model was successfully trained using entirely a self-supervision mechanism on low-quality
data. Furthermore, it was shown to exhibit loss minima on manually generated masks before the
loss minima on testing masks, implying that the model achieves best results when undertrained.
The use of self-supervision and machine-assisted dataset generation tremendously reduced the
amount of manual effort needed to create a practicable model. We hypothesize that this technique
is applicable to other segmentation tasks on more difficult datasets. However, its efficacy depends
largely on the ability for a dataset to be segmented productively without the use of machine
learning, restricting the technique to more controlled segmentation environments such as biomedical
and microscopic segmentation, especially in environments where color data can be preserved.
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