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Abstract

Advances in brain-computer interface technology seek to enable nuanced control of neu-
ral activity patterns. This study demonstrates a framework combining artificial intelligence
and high-resolution optical sensing to identify and modulate intricate signaling dynamics.
Genetically-encoded calcium indicators provide fluorescent readouts of neuronal firing. An
autoencoder neural network compresses these optical data into a compact latent space, ex-
tracting interpretable features. The novel software Rasa coordinates data flow, deploying
the models to translate neural sequences into vector representations. By comparing latent
vectors of target and observed activity, Rasa identifies desired patterns and administers neu-
rofeedback accordingly. Initial in vivo validation demonstrates increased activity of simple
correlated firing patterns under this novel stimulation paradigm versus unmodulated record-
ings in rat motor cortices. While limited by experimental constraints, these preliminary
results highlight the potential of integrated machine learning techniques and fine-grained
optical sensing to reinforce complex behavior. Looking forward, such AI systems could
unlock new therapeutic abilities to remedy dysfunctional neurological signaling underlying
disease states.
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1 Introduction

As scientific understanding of functional neural activity increases, researchers have begun
to take an interest in the treatment of the human brain as an input-output (I/O) computa-
tional machine [1]. This interest arises from the neurological capacity for conditioning that
the brain uses in adapting to its physical environment. A major question in the field of neu-
roengineering is to what extent neural plasticity can be controlled via an external electrical
stimulus [2] [3]. This question informs methods in closed-loop neurofeedback, a technique
relying on electrical stimulation of dopaminergic pathways in the brain to reinforce synaptic
potentiation [4]. It is believed that this method can be used to modulate activity of neu-
ron groups [4]. The psychological implications of this have made the modulation of neural
circuits a candidate of great interest for therapeutic treatments [5]. However, the ability
of closed-loop neurofeedback to be demonstrated on a cellular scale, where it could have
the most powerful impact for therapeutic treatment, has been inhibited previously by the
difficulty of accurately providing feedback to a target and then training that target neuron
group on signals of any non-trivial informational value.

Current neuroimaging and neurophysiological sensors, such as electroencephalography
(EEG) and electrocorticography (ECoG), expand our ability to model brain activity, but
both technologies fall short in capturing specific activity with high spatiotemporal accu-
racy, instead measuring the summation of synchronized postsynaptic potentials over a large
electrode application region [6] [7]. Furthermore, both ECoG and EEG confound haemody-
namic methods of analysis such as fMRI, a valuable tool for mapping the brain activity on
a global, albeit lower-resolution, scale. To address this, calcium sensors based on genetically
embedded fluorescent proteins such as GCaMP have emerged as a potential alternative for
capturing neurological activity at finer scales [8]. The data generated from calcium sensors
can form the foundation of a neurofeedback output stream.

In the wake of recent advancements in neuroscience, there is also a growing consensus that
electrical deep brain stimulation, apart from acting as a data receiver from neural sensors,
can potentially serve as a robust input channel for neurofeedback and thus form an integral
component of a Brain-Machine Interface (BMI). This process commences with an observation
of neural activity, which is subjected to online analysis to provide a requisite stimulation [9]
[10] [11]. However, the current neurofeedback techniques are bound by both the complexity of
the conditionable signals and also the experimental difficulty of conditioning, which together
conspire to severely inhibit the encoding of explicit brain signals and confine conditioning to
simplistic binary-enforceable signals (i.e., Do we observe a spike?: Yes/No) [12] [13].
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This study seeks to challenge these limitations, targeting the complexity of encodable
signals and the rate at which these signals can be trained. I propose to optimize the training
of neural signals by defining a continuous similarity function that can be used to robustly
evaluate the closeness of two arbitrary signals. I use an autoencoder neural model to define
a vector representation of a particular neural signal as the values of latent variables at the
bottleneck of an autoencoder model. Through comparing the distance of a target and active
vector in the latent space of an autoencoder model, we were able to define an optimizable
point to approach for conditioning. This technique aims to amplify the diversity and com-
plexity of encodable signals within the existing feedback framework, while also enhancing
the precision and speed of training for even simple signals. In tandem with this, I intro-
duce a new software package, developed in the Rust programming language and specifically
crafted to address the glaring issues of data latency, integrity, and performance encountered
with existing data logging and real-time visualization software. By integrating the new soft-
ware with the innovative optimization technique, this study aims to introduce a refined,
comprehensive solution to the existing limitations in neurofeedback and conditionable signal
complexity.

2 Ethics

The study of how active electric feedback relates to neural potentiation requires the use of
living brain tissue. As the purpose of our research relates to the possible therapeutic im-
plications of closed-loop neurofeedback, laboratory rats (Rattus norvegicus domestica) were
obtained from Braintree Scientific. These rats serve as ideal candidates for feedback due
to a neural anatomy similar to humans, as well as detailed existing maps of rodent neural
potentiation. Due to the surgical and sensor limitations attendant to small animals and
invertebrates, there is extensive precedent for neurofeedback on this species [14]. Indeed,
Rattus norvegicus domestica has been used as a model organism for investigating neurofeed-
back since the 1960s [14]. Four female rats were kept in accordance with guidelines set by the
Institutional Animal Care and Use Committee of the Massachusetts Institute of Technology.
For the purposes of this study, feedback was administered to a single subject, six months in
age, 250 grams in weight, and approximately 18 cm in length. After all procedures, adequate
pain relief was granted to the subject, and sufficient rest time was allowed between opera-
tions and testing. This study did not require the use of any additional subjects or feedback
experimentation than was already approved for a large-scale feedback study on rat motor
cortex modulation that is unrelated to the computational model set forth in this paper.
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Figure 1. Left: Bipolar deep brain stimulation electrode: (+3.4mm AP, +1.7mm ML,
8.5mm DV); Right: Virus (AAV9 containing DNA encoding GCaMP8f cargo) and optic
fiber: (-2mm AP, +/-3.5mm ML, 2.5mm DV). Medial forebrain bundle (central dopeminergic
pathway) highlighted orange. Approximate GCaMP fluorescent area highlighted green.

3 Methods

3.1 Surgical Preparation

We performed an initial surgery to implant a 200 µm-diameter optic fiber canula in the
rat’s motor cortex, allowing for the reading of GCaMP8f-based photometry data [15] [16]
[17] [18]. The animals were provided with isofluorane analgesic pain relief during and after
the operation in addition to general anaesthetization [19]. During surgery, the genetically
encoded calcium indicator GCaMP8f was introduced virally at stereotaxic coordinates of
2.0mm anterior of bregma, 3.5mm lateral, and 2.5mm ventral from bregma, which are part of
a broad area of the motor cortex hypothesized to be under the control of volitional movement
[20]. The clarity of their purpose and lack of confounding noise makes these regions an ideal
target for feedback. Following the recovery period from this surgery, the rats were again
anaesthetized for a craniotomy to insert a deep-brain electrode that stimulates the Medial
Forebrain Bundle (MFB). The MFB is a dopaminergic pathway that plays a significant role
in the brain’s reward system. In neurofeedback, the ventral tegmental area’s connection to
the nucleus accumbens influences mood and behavior, allowing detectable brain signals to
be correlated to emotional change in the deep brain [21]. This provides an incentive for
behavior modulation in the testing rats via the closed-loop neurofeedback circuit.
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3.2 Dataset

GCaMP8f fluorescence data was read from a highly sensitive photosensor integrated into an
Arduino setup. The fluorescence intensity values of the GCaMP complex read from the fiber
were passed through an amplification tube [17], and the intensity from the left and right
hemisphere sensors was read concurrently by the Arduino, which serialized the two input
streams and directed the data flow to software. Under this setup, 180 million sequential
time points were saved for each hemisphere, representing approximately 30 hours of sensing
under both dormant and scanning environments. This volume of data was made possible by
a novel software suite Rasa, which, in addition to offering machine learning solutions for data
processsing, was built as a low-level software system for interpreting the high volume of data
attainable from GCaMP photometry. With this purpose-built software, the control dataset
was captured for five rats who were subsequently undergoing fMRI experimentation. As
such, the dataset represents a wide character of neural activity, including both sleep spindles
during anaesthetization and high frequency activity in response to the environment of the EPI
scan. The unified two-channel data stream from each was subdivided into discrete subsets of
2, 560 values by a sliding window with no self-overlap (i.e., points 0-2,560 are subset 1; points
2,561-5,120 are subset 2). The size of the window was chosen to be approximately equal to
the number of data points processed per second in the new software, making each subset
approximately one second in length. Within both channels, groups of 40 points were averaged
to pool the 2560-value subsets into 64-value subsets. This may seem overly destructive;
however, it serves the important purposes of (a) reducing noise in highly sensitive photometry
data, (b) shrinking the data such that it can be analyzed on a millisecond timescale, and (c)
increasing recognition of similar features for the signal comparison algorithm that forms the
primary innovation of this study. Furthermore, the algorithm still perceives neural activity
down to 1/64th of a second in duration, and with improved confidence against noise, due to
the vastly increased data volume.

Despite the pooling operation, the subsets are still two-channeled, with the left and
right hemisphere sensors being treated completely independently up until this point. For
a target signal under the current stimulation setup, the animal is learning to converge on
the simultaneous activation of the desired signal at both locations in the motor cortex. If
we are interested in conditioning correlated release of potential, we do not want to provide
positive feedback on a release of potential in only one of two regions. Therefore it is essential
that the final model consider both channels simultaneously. The difficulty of this task is
increased by the fact that the gain of the photosensor and offset between two channels base
fluorescence reading is non-constant [17]. In order to effectively compare signals, they must
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first be normalized and concatenated, such that they may be passed to a neural network or
similarity algorithm.

For each channel in each subset, every value was subtracted from the mean value in
the channel for that collection of 64 points, centering the distribution around zero. The
normalized channel is ascertained after dividing each value by the global standard deviation
of data acquired during that session to account for the non-constant sensor gain between
trials. Mathematically, for some sequence s as a part of continuous stream m,

snorm =
s− avg(s)

σm

.

Finally, the two channels require some mechanism of concatenation such that they can be
passed into a single comparative model. For artificial neural models, the exact mechanism
is not particularly important, as the method will be learned quickly as long as they are
sufficiently distinct. For the purposes of this study, I simply offset the left channel by a
value of four, such that the first 64 elements of the autoencoder input are centered around
zero, and the remaining 64 elements are centered around four. This number was chosen so
as to be small enough to not deal with bias terms in the network but large enough to not
conflate the two channels.

3.3 Model Design

The computational model seeks to compare two signals: an observed signal and a target
signal. The observed signal reflects the most recent selection of activity recorded from the
sensors. The target signal reflects the signal we want our observed neuron group to produce.
Electrostimulation is able to reinforce “desired” behavior [3], but that does not help to answer
what is defined as a desirable signal. Much research in neurofeedback has been interested in
inducing beta-band or gamma-band activity [22] [23], for which the Fourier Transform alone
provides a good picture of desirable activity. Other methods, focusing on neural potentiation,
have used peak-detection algorithms or binary thresholds [24] [25]. These techniques suffer in
terms of generalizability and continuity. For this study, I propose the use of an autoencoder
as a means of continuously comparing two signals for the purposes of neurofeedback. A model
for this task requires a method of describing with a continuous variable exactly how close a
signal is to a target signal. In theory, this would allow incremental improvements in quality,
e.g., if one wished to reinforce a strong double peak. Instead of always rewarding that activity
when it happens correctly, which happens to be considerably rare and unpredictable, the idea
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Figure 2. Visualization of headless autoencoder. Raw latent vectors considered in embed-
dings space.

is to reward more frequent, but incorrect activity, and gradually increase the threshold for
correctness based on the continuous numerical evaluation for similarity. This evaluation may
be derived with an artificial neural model table to perform analysis that is (a) efficient enough
to give the impression of continuity in the evaluation stream and (b) able to define a “loss”
mechanism to show how the current target should descend towards the optimization signal.
I hypothesized that an autoencoder would be an effective solution to this task. Autoencoder
models take a higher-dimensional input stream such as an image or sequence, and, instead
of performing inference on it, shrinks it to a narrow bottleneck layer, in which each weight
represents some underlying property of the input data structure [26]. This layer is called
the “latent layer” and represents the most compact representation the input that the model
produces. The model then trains the weights of the encoder by attempting to reconstruct
this bottleneck into the original input data with no external aid. Interpreted as a vector,
latent vectors form the basis of the latent space, a inferential embedding space for the model
containing the representation for all possible signals [26].

The artificial neural architectures that were tested take the averaged 128-point GCaMP
signal and pass the signal through an autoencoder model, which concludes with a 16-node
output layer that, in vector form, represents a 16-D vector in the latent space. In practice,
the target signal, which by design may be completely arbitrary, can be encoded into a vector.
The model evaluates quality of the observed signal at any given time by vectorizing it with
the autoencoder and computing the cosine similarity of the target and observed vectors.

This similarity is a continuous variable that is able to robustly compare two neural signals
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with an understanding of the types of signals that occur endogenously in the motor cortex.
The continuity of the comparison facilitates new methods of feedback more nuanced than
previous methods. In a particularly simple case, a threshold of acceptable similarity may be
defined as a criterion for a reward, reinforcing a desirable signal. This can be re-applied with a
low latency using a sliding window over the most recent datapoints. More advanced methods
that utilize this continuity can be easily imagined: a particularly interesting technique may
be a continuously applied reward or anti-reward to act as a titrated “hotter-colder mechanism
for more effective reinforcement.

3.4 Implementation

Three autoencoder models were implemented in PyTorch based on this task: a 1-Layer LSTM
[27], 3-Layer LSTM, and 2-Headed Transformer [28]. All models took a sequence of size 128
as an input and embedded the sequences in a 16-dimensional space. The cosine similarity of
the pure signals (as opposed to the vectors) was used as a control. Signal cosine similarity
is currently among the most widely used techniques for neuroscientific signal analysis [29].

3.5 Software Design

To use the artificial neural model for feedback applications, a novel software package titled
Rasa was developed using the Rust programming language as a high-performance, multi-
threaded, interactive solution to integrate analytical tools with memory-safe and accurate
data-processing. The previously described Arduino-photosensor circuit is taken as an input,
allowing data to be transferred to the computational software with a USB output bus at very
high baud rate of 115,200. It was necessary to develop software that can log received data
with an extremely low latency in order to ensure the robustness of a machine learning model
and allow stimulation to be delivered with confidence closer to the observation of the neural
signal. Furthermore, concerns about animal safety in response to neurofeedback dissuaded
weakly structured software design and language use. These mandates demanded the use of
a systems language with rigorous static analysis and high runtime performance. The novel
software was designed with thread-safe software infrastructure to separate the visualization,
input, and analytical components with synchronous channels of two-sided deques from which
the most recent data points read from the Arduino can be served to the desired consumer.
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4 Results

4.1 Model Evaluation

Figure 3. 1,325 Latent space vectors mapped to PCA embeddings, further mapped to
t-SNE embeddings, clustered with K-Means to visualize continuous network of signals and
strong peak outliers. Two regions selected from flat and peaked areas of distribution. Blue
line: right cortex channel. Red line: left cortex channel. Vertical offset for clarity.

In order to evaluate the quality of each architecture, an evaluation set of target signals
was created. This serves to validate that the model is indeed capable of identifying the target
signal successfully and with a high statistical power. This test does not take advantage of
the continuity aspect, but serves as a baseline needed to start using the method experimen-
tally. To generate the feature set, a medium-sized dataset of latent vectors were clustered
provisionally with the SciPy implementation of the Principal Component Analysis (PCA)
algorithm to form an initial 2D representation. The PCA points were then passed through a
t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm and finally clustered with
K-Means, as shown in Figure 3. Correlated spikes between the left and right motor cortex
are one of the most recognizable features that occur endogenously and were selected as the
point of comparison for the models. To be explicit: this clustering did not influence the cre-
ation of the models in any way. It only served as a semi-automated method for generating
the feature set. Finally, the feature set was inspected manually.

Each architecture was evaluated based on the percent correct:
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Model Parameters Latency (ms) Correct (%)
Cos. Similarity 0 3.72 32.5
1-Layer LSTM 12961 2.72 92.4
3-Layer LSTM 29857 4.08 90.7
Transformer 277297 4.77 98.7

The latency for each system was approximately equal. Latency was averaged between
5000 samples per model, performed on a Google Colab V100 GPU instance. The latency
of all models was considered within tolerance for use for real-time neurofeedback. Despite
the large parameter size and comparatively high latency, a transformer model was chosen as
the ideal design due to its high accuracy, which demonstrates that the latent vectors form a
more meaningful representation of the data using this architecture.

4.2 Software Evaluation

Figure 4. Latency after 5 minutes by software. (n = 100, p = 2.6 · 10−34).

To determine the effectiveness of the novel software, both the new and old software were
tested after five minutes of idling, eliminating cold-start bias and exemplifying the long-term
performance benefits of optimized data structures provided by the new implementation. In
order to evaluate the latency of the software, an artificial signal would be supplied to the
datastream buffer of the respective software every 100 milliseconds by a separate independent
timer thread. Following this, the active thread would exhaustively search for the signal
among the 128 most recent entries, recording the difference in time between the most recent
signal and the beginning of the search. Bias was eliminated by controlling for the search
time in Rust (n = 5;µ = 0.133 ms) and Python (n = 5;µ = 0.805 ms).
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The distribution of latencies observed from the experiment was evaluated with a two-
sample T-Test under the hypothesis that the new method has a lower latency than the
previous method. The test evaluated to a p-value significant past α = 0.0001, indicating a
strong confidence in the improved performance of the novel software.

4.3 In Vivo Evaluation

Figure 5. Top: Similarity values over time for control and experimental trial. Bottom:
distribution of similarity scores over time. p = 0.0021

The model and software were integrated into the software package Rasa and run on
the McGovern Institute 9.4T fMRI Imaging Setup for an EPI scan under neurofeedback.
This study seeks to demonstrate that this method of neurofeedback will, at a minimum,
act equally in place of the existing neurofeedback setup. As such, it would increase the
generality of the methods with no decrease in learning rate. Feedback was administered
with the use of a deep-brain electrode shown in Figure 1 as a response to desirable motor
cortex activity measured through the Rasa model. For simplicity, we rewarded correlated
peaks of electrical activity in the two neuronal ensembles considered by the two optical fibers.
For the temporarily paralyzed rat, the neural signals and neurofeedback were monitored for
two subsequent 20-minute sessions, the first of which generated a “naive” dataset under no
stimulation and the second of which was performed with neurofeedback monitoring, with a
reward delivered when the observed signal had a computed cosine similarity greater than 0.7
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to the target signal. During the second session, the model and software achieved a correlated
peak above the threshold 15 times and was stimulated 13 times (discrete peaks separated
from one another by less than 16 seconds removed were noted, but not rewarded in order
to prevent overstimulation and preserve the health of the animal). The choice of 0.7 as
a threshold was arbitrary and a hyperparameter of the experiment. As such, its value is
controllable inside of the Rasa software, allowing researchers to control the frequency and
lenience with which reward to be administered.

This training session provides strong evidence that the use of stimulation under the novel
system provides improvement over no stimulation. However, due to the small training size
and lack of controls, it did not show strong evidence of improvement over the previous
method (p = 0.20 + No unbiased comparison).

5 Discussion

The method showed promise in our initial experiments as a method of defining neurofeed-
back qualification. Unfortunately, due to time constraints and the high demand for use of
the 9.4T fMRI, this experiment was only able to be performed once. During the two-week in
vivo portion of this study, there were no opportunities to use the machine during weekdays
between the hours of 8AM-5PM, which were the only times available due to laws involving
supervision of minors in bio-hazardous laboratories. This prevented the execution of the ini-
tial experimental design, which was to test the novel method’s unique ability to encode more
complex signals by attempting to reinforce the embedding of a non-correlated peak, a signal
that does not generally occur endogenously within rats (constituted 1 of 13,709 sequences
in unabridged dataset). This more complex task represents the fundamental advantage of
the autoencoder model and loss mechanism. Despite this, the full experiment is scheduled
now on the fMRI/Photosensor setup in early 2024, likely occurring over the course of 5-8
multi-hour training sessions to account for the increased signal complexity and additional
robustness checks. Even though the central experiment was not executed, the Rasa software
system and use of ML-based signal analysis for simple signals is beginning to underscore the
wider neurofeedback procedure outside the scope of this experiment in isolation.
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6 Conclusions

This paper outlines the developmental process of the software system Rasa and its constituent
transformer model, which represents a novel technique for reinforcing cognition modulation
based on closed-loop neural signals. We succeeded in demonstrating the performance effec-
tiveness of the software, which has served to aid in more robust data analysis, and improving
the ability to detect subtler, and shorter neuronal signals. Furthermore, we developed three
unsupervised models that demonstrated the ability to identify arbitrary neural signals and
reward them based on the literal positioning of the embedding vectors.

7 Proposed Experiment

Despite a paucity of in vivo data under the novel stimulation paradigm, the model and
software have shown experimental promise. As such, I propose additional experiments that
are entirely possible given the current capabilities of Rasa. This study provides software
and methods towards robust neurofeedback; this begins with conditioning signals that never
occur endogenously within the brain. Under previous training paradigms, such a signal would
not be possible to train, as it would by definition never occur in the observed GCaMP signal.
If we wish to train a completely artificial signal, imagine a moving threshold throughout the
course of training. As the animal begins to learn from feedback, the threshold will be very
low (i.e., any signal resembling the form of the target will be rewarded). As it continues to
produce this, the standard for reward will grow. The use of an autoencoder for the signal
analysis gives a very robust way to measure how the characteristic of a signal compares to
a target, provided knowledge of the spectrum of signals the animal’s brain can produce.
Essentially, this experiment proposes a stochastic gradient descent to the signal within the
brain through the continuous similarity metrics provided by Rasa.

8 Code Availability

The source code for Rasa, as described in this paper, is available on GitHub under an MIT
license.
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